
Clock Synchronization in Distributed System

Nikhil Khandare, Modraj Bhavsar , Prakash Kumare, Sowmiya Raksha

Veermata Jijabai Technological Institute (VJTI),
Matunga Mumbai-19

Abstract: Computer technology has advanced at a fast and
steady rate during recent years. Improvements in VLSI
technology and processor architecture have resulted in
microprocessors with performance/cost ratios that are several
orders of magnitude greater than those available a decade ago.
During the same period, and motivated by these advances,
parallel computing evolved to become the leading direction
towards teraflop-level performance. This paper presents and
analyzes a clock synchronization algorithm which is
probabilistic that can guarantee a much smaller bound on the
clock skew than most existing algorithms. We also discuss the
basics of clock synchronization physical clock, logical clock and
synchronization algorithms. A closed-form expression that
relates the probability of invalidity to the clock skew and the
number of synchronization messages is also derived.

Index Terms: Clock synchronization, deterministic algorithm,
distributed systems, master-slave scheme, probabilistic algorithm,
probability of invalidity, time transmission protocol

INTRODUCTION
A hardware clock which is fault free, even if initially
synchronized with a standard time reference, tends to drift
away from the standard over a period of time. As a result, an
interval of time measured with such a clock tends to be in
error. However, the rate at which the hardware clock deviates
from the standard is bounded by a constant. This constant,
known as the maximum drift rate of the clock, typically of the
order of 1 microsecond per second A direct consequence of
the phenomenon of clock drift is that clocks in a distributed
system gradually deviate from each other over a period oft,
time. Closely synchronized clocks are necessary in several,
important distributed systems applications, including
financial transactions, stock trading, airline reservations, hard
real-time systems, distributed file systems, authentication,
and performance evaluation. A clock synchronization
algorithm is used in a distributed system to ensure that the
skew that develops between clocks remains bounded. Several
clock synchronization algorithms have been proposed in the
literature. This paper proposes and analyzes a new clock
synchronization algorithm based on a probabilistic approach.
The proposed algorithm can guarantee a much smaller bound
on the clock skew than most existing clock synchronization
algorithms.

PHYSICAL CLOCKS
Most computers today keep track of the passage of time with
a battery-backed up CMOS clock circuit, driven by a quartz
resonator. This allows the timekeeping to take place even if
the machine is powered off. When on, an operating system

will generally program a timer circuit (a Programmable
Interval Timer, or PIT, in older Intel architectures and
Advanced Programmable Interrupt Controller, or APIC, in
newer systems.) to generate an interrupt periodically
(common times are 60 or 100 times per second). The
interrupt service procedure simply adds one to a counter in
memory. While the best quartz resonators can achieve an
accuracy of one second in 10 years, they are sensitive to
changes in temperature and acceleration and their resonating
frequency can change as they age. Standard resonators are
accurate to 6 parts per million at 31°C, which corresponds to
±½ second per day.

COMPENSATING FOR DRIFT
We can envision clock drift graphically by considering true
(UTC) time flowing on the x-axis and the corresponding
computer’s clock reading on the y-axis. A perfectly accurate
clock will exhibit a slope of one. A faster clock will create a
slope greater than unity while a slower clock will create a
slope less than unity. Suppose that we have a means of
obtaining the true time. One easy (and frequently adopted)
solution is to simply update the system time to the true time.
To complicate matters, one constraint that we’ll impose is
that it’s not a good idea to set the clock back. The illusion of
time moving backwards can confuse message ordering and
software development environments.

LOGICAL CLOCKS
Let’s again consider cases that involve assigning sequence
numbers (“timestamps”) to events upon which all cooperating
processes can agree. What matters in these cases is not the
time of day at which the event occurred but that all processes
can agree on the order in which related events occur. Our
interest is in getting event sequence numbers that make sense
system-wide. These clocks are called logical clocks. If we
can do this across all events in the system, we have
something called total ordering: every event is assigned a
unique timestamp (number), every such timestamp is unique.
However, we don’t always need total ordering. If processes
do not interact then we don’t care when their events occur. If
we only care about assigning timestamps to related (causal)
events then we have something known as partial ordering.
Leslie Lamport developed a “happens before” notation to
express the relationship between events: a→b means that a
happens before b. If a represents the timestamp of a message
sent and b is the timestamp of that message being received,

Nikhil Khandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 457-460

www.ijcsit.com 457

then a→b must be true; a message cannot be received before
it is sent.
This relationship is transitive. If a→b and b→c then a→c. If
a and b are events that take place in the same process the
a→b is true if a occurs before b. The importance of
measuring logical time is in assigning a time value to each
event such that everyone will agree on the final order of
events. That is, if a→b then clock(a) < clock(b) since the
clock (our timestamp generator) must never run backwards. If
a and b occur on different processes that do not exchange
messages (even through third parties) then a→b is not true.
These events are said to be concurrent: there is no way that a
could have influenced b.

DELIVERY TIME DELAY
As mentioned in the previous section, the other major
problem to be faced in WSN clock synchronization, is the
random delivery time of messages. In particular, it is possible
to decompose the total delivery time into different parts, as
thoroughly analyzed:

 Send Time, Ts: time needed to read the local clock,
assemble the message, and do the send-request to
the MAC layer on the transmitter side. Depending
on the system call overhead of the OS and on the
current processor load, the send time is non
deterministic and can be as high as hundreds of
milliseconds.

 Access Time, Ta: waiting time to access the channel
until transmission begins. It depends on the traffic
on the radio channel and the backoff time of the
CDMA protocol implementation. It varies from
milliseconds up to seconds depending on the
current network traffic.

 Transmission time, Tt: time necessary for the sender
to transmit the message. This time is in the order of
tens of milliseconds depending on the length of the
message and the speed of the radio.

 Propagation time, Tp: travel time of a message
from sender to receiver. The propagation time is
highly deterministic and it depends only on the
distance between the two nodes. This time is less
than one microsecond for node distances under 300
meters.

 Reception time, Trp: time necessary for the receiver
to receive the message. It is the same as the
transmission time, i.e. Trp = Tt.

 Receive time, Trv: time required to process the
incoming message and to notify the reception to the
application. It is similar to the send time.

The total delivery delay, Td is then given by:
Td = Ts + Ta + Tp + Trp + Trv
A. Deterministic Clock Synchronization:
Algorithms Most clock synchronization algorithms proposed
in the literature try to guarantee an upper bound on the clock
skew with certainty. However, a theoretical limit derived by
Lundelius and Lynch limits the maximum clock skew that
these deterministic algorithms can guarantee. It is shown that

the upper bound on the clock skew that can be
deterministically guaranteed by any clock synchronization
algorithm can be no smaller than (dmax — dmin)(1 +1/n).
Here N is the number of nodes in the system, and dm and
dmin, respectively, denote the maximum and minimum
values of message delays in the system.
B. Probabilistic Clock Synchronization Algorithms:
The theoretical limit established constrains only those
algorithms that provide a deterministic guarantee on the
maximum clock skew. Clock skews that are significantly
smaller than this theoretical limit can be achieved if we are
willing to relax the requirement of determinism and accept a
probabilistic guarantee. A guarantee is said to be probabilistic
if it fails to hold sometimes, but with a failure probability that
can be determined or bounded. A clock synchronization
algorithm that provides a probabilistic guarantee on the
maximum clock skew, is referred to as a probabilistic clock
synchronization algorithm. Note that the word "probabilistic,"
as used here, connotes the uncertainty in the guarantee
offered by the algorithm, rather than any randomness in the
actions of the algorithm,
Cristian's Probabilistic Algorithm:
The idea of probabilistic clock synchronization was proposed
by Cristian. Cristian also proposed the first probabilistic
clock synchronization algorithm, referred to as CRI.
Cristian's algorithm is based on a remote clock reading
(RCR). RCR is used by a node to read the clock at a remote
node with a specified minimum accuracy. RCR involves
querying a target node for the time on its clock. The querying
node then estimates the time on the target node's clock from
the response received. RCR guarantees that the maximum
estimation error is approximately D — dmin, where D is half
the response time and dmin is the minimum response time.
CRI is a master-slave algorithm that makes use of RCR to
achieve synchronization. One node in the system is
designated as the master, and the remaining nodes are
designated as slaves. Each slave periodically resynchronizes
with the master by estimating the reading on the master's
clock by using RCR and adjusting its own clock accordingly.
However, resynchronization is not guaranteed, because RCR
may fail to achieve communication or understanding. The
probability that algorithm CRI fails to resynchronize can be
determined analytically. Thus, CRI is a probabilistic clock
synchronization algorithm, and is not subject to the limit
established. As a result, CRI can guarantee much smaller
maximum clock skews than deterministic algorithms.

FAULT TOLERANCE
Tradeoff between fault tolerance and communication cost (m
= 2, N = 256)

Array Fmax
Remote clock reading per round

(N*(N1*N2-2))
16*16 5 7680
8*32 10 9728
4*64 21 16896

2*128 42 32768
1*256 85 65280

Nikhil Khandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 457-460

www.ijcsit.com 458

Moreover, each of the a-clock readings gathered by p during
that step originates from a node at a distinct (m - 1)th-step
group. It may seem counter-intuitive that the fault tolerance
of m-ICV depends only on the size of dimension m and is
independent
of the other dimensions of the array. Thus, the number of
faults tolerated can be increased simply by increasing the size
of dimension m. However, increasing the degree of fault
tolerance in this way does not come without cost. Increasing
the size of dimension m while holding the number of nodes
fixed forces either some dimensions to be eliminated or the
numbers of nodes in other dimensions to be reduced.

CLOCKS AND REAL TIME
Real time and clock time quantities are, respectively,
measured in seconds and SECONDS and are defined as
follows:
DEFINITION 1. Time that is measured in an assumed
Newtonian time frame (which is not directly observable) is
referred to as real time and is denoted by t, u, or v.

DEFINITION 2. Time that is directly observable in a TSP’s
hardware clock is referred to as hardware clock time. We
denote the value displayed by TSP p’s hardware clock at real
time t by Hp(t).

DEFINITION 3. TSP p’s hardware clock is correct in a real-
time interval [t1, t2] if, for all intervals [u1, u2] µ [t1, t2], the
bounded drift condition holds:

|(Hp(u2) - Hp(u1)) - (u2 -u1)| . r (u2 -u1) + G,

where r and G are, respectively, the maximum drift rate and
the granularity of a hardware clock.

Definition 3 states that a correct hardware clock measures the
duration of a real-time interval [u1, u2] with an error of at
most r (u2 - u1) + G. Hardware clocks are often implemented
with a quartz oscillator and a counter, giving typical values of
r on the order of 10^(-7) to 10^(-5). This technology can also
produce high-resolution hardware clocks describes a clock
synchronization unit for which G = 1 ms).

CLOCK TOPOLOGIES
The topology property of a clock defines how events are
ordered in relation to each other and the interpretation of that
ordering we can show how a clock topology can produce
different event orderings from the same event set

 A linear graph ordering may be appropriate, if the
topology does not characterize concurrency.

 A tree if the topology characterizes concurrency but
not the synchronization between objects.

 A directed, acyclic graph if concurrency and
synchronization between objects are characterized.

In all of these examples, the interpretation of the topology
could follow that of potential causality: If a path exists
between any two nodes, then the earlier node on the path may

be a cause of the later node, otherwise the events may have
occurred concurrently. The metrication property of a logical
clock is a data structure containing counters (usually called
timestamps), rules for advancing the counters, and rules for
interpreting a timestamp to order the events or to identify if
events may have occurred concurrently. The metrication must
be consistent with the topology, so the topology expresses
requirements on the metrication. For example, a vector time
logical clock FL has a metrication of a vector of integers that
can be used with a partial ordering relation to reconstruct a
directed acyclic graph with a causal interpretation. Other
metrication % for vector time have been proposed and are
reported. A clock topology and metrication does not need to
form a causal graph of events, although this is an intuitive
characterization. For example, KF,hemkalyani exhaustively
examined causal relationships between discrete and dense
intervals of events, cataloguing 16 types of interactions
between two intervals.

TOTAL ORDERING
Note that it is very possible for multiple non-causal
(concurrent) events to share identical Lamport timestamps.
This may cause confusion if multiple processes need to make
a decision based on the timestamps of two events. The
selection of a specific event may not matter if the events are
concurrent but we want all the processes to be able to make
the same decision. This is difficult if the timestamps are
identical. Fortunately, there’s an easy remedy. We can create
a total order on events by further qualifying them with
identities of processes. We define a global logical timestamp
(Ti,i) where Ti represents the local Lamport timestamp and i
represents the process ID (in some globally unique way: for
example, a concatenation of host address and process ID).

CONCLUSION & FUTURE WORK

In this paper we have studied the various strategies of
synchronization in Distributed system. In the domain of
synchronous timeout approach are worth mentioning. The
former is an asymmetric protocol and assumes, like us, an
authenticated Byzantine model within a TMR system; further,
it assumes every client to be a TMR system as well and
solves the problem of message ordering together with
majority voting of inputs. AMp was developed with
commercial applications in mind, and provides the same
message ordering guarantees as our protocol in a general n-
processor system but assumes a benign fault model where
processors either crash or occasionally omit to produce
responses. Our assumption of authenticated Byzantine faults
is weaker and, as argued, any further weakening of our fault
model makes the desired form of message ordering
impossible in a three-processor system. In the asynchronous
model, the processing, the scheduling, and communication
delays are only known to be finite, but their (upper) bounds
cannot be known with certainty. Consequently, no
deterministic message ordering protocol can be guaranteed to
terminate even if one processor can crash [30]. This
impossibility stems from the inherent difficulty in

Nikhil Khandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 457-460

www.ijcsit.com 459

determining whether a remote processor has crashed or is
only very slow. That is, since the asynchronous model
permits any prior estimates of bounds to be violated, a fault-
tolerant deterministic protocol cannot be guaranteed to
terminate. It can only guarantee correctness without
liveliness: If nonfaulty processes order a given message, they
do so identically.
However, extensive work is still necessary to compare the
performance of our proposed approach relative to FTSP and
other protocols over large scale multi-hop sensor network and
over longer periods. Moreover, some of the the parameters
have not been optimized to cope with the fact that the clock
skews change over time and that there are small
measurement time delays We are currently analyzing these
effects to compute estimates of the expected synchronization
errors as a function of the number of nodes and the
communication topology.

REFERENCES:
[1] C. Guillemot et al., “Transparent optical packet switching: the European

ACTS KEOPS project approach,” J. Lightwave Technol., vol. 16,
pp.2117–2134, Dec. 1998.

[2] D. J. Blumenthal et al., “Optical signal processing for optical packet
switching networks,” IEEE Commun. Mag., vol. 41, pp. S23–S29, Feb.
2003.

[3] C. Su, L.-K. Chen, and K.-W. Cheung, “Theory of burst-mode receiver
and its applications in optical multiaccess networks,” J. Lightwave
Technol., vol. 15, pp. 590–606, Apr. 1997.

[4] G. Georgiou et al., “Clock and data recovery IC for 40 Gb/s fiber optic
receiver,” IEEE J. Solid-State Circuits, vol. 37, pp. 1120–1125, Sept.
2002

[5] Y. Ota et al., “High-speed, burst-mode, packet-capable optical receiver
and instantaneous clock recovery for optical bus operation,” J.
Lightwave Technol., vol. 12, pp. 325–331, Feb. 1994

[6] D. Wonglumsom, I. M. White, S. M. Gemelos, K. Shrikhande, and L. G.
Kazovsky, “HORNET—a packet-switched WDM network: optical
packet transmission and recovery,” IEEE Photon. Technol. Lett., vol.
11, pp. 1692–1694, Dec. 1999.

[7] H. Nishizawa, Y. Yamada, K. Habara, and T. Ohyama, “Design of a 10-
Gb/s burst-mode optical packet receiver module and its demonstration
in a WDM optical switching network,” J. Lightwave Technol., vol. 20,
pp. 1078–1083, July 2002

[8] C. Bintjas et al., “Clock recovery circuit for optical packets,” IEEE
Photon. Technol. Lett., vol. 14, pp. 1363–1365, Sept. 2002.

[9] D. Chiaroni et al., “All-optical clock recovery from 10 Gbit/s
asynchronous data packets,” in Proc. Eur. Conf. Optical
Communication, vol.4, 2000, pp. 69–70.

[10] B. Sartorius, C. Bornholdt, S. Bauer, and M. Mohrle, “40 GHz optical
clock recovery for application in asynchronous networks,” in Proc.
Eur.Conf. Optical Communication, 2001, Paper We.P.32, pp. 442–443.

[11] K. L. Hall and K. A. Rauschenbach, “100 Gbit/s bitwise logic,” Opt.
Lett., vol. 23, pp. 1271–1273, Aug. 1998.

[12] R. J. Manning and G. Sherlock, “Recovery of a _ phase shift in _12.5 ps
in a semiconductor laser amplifier,” Electron. Lett., vol. 31, no. 4, pp.
307–308, 1995.

[13] C. Bornholdt, J. Slovak, M. Moehrle, and B. Sartorius, “Application of
80 GHz all-optical clock in a 160 km transmission experiment,” in
Proc. Optical Fiber Communication Conf., 2002, pp. 87–89.

[14] T. Akiyama et al., “Nonlinear gain dynamics in quantum-dot optical
amplifiers and its application to optical communication devices,” IEEE
J. Quantum Electron., vol. 37, pp. 1059–1065, Aug. 2001

[15] M. Usami et al., “Mechanism for reducing recovery time of optical
nonlinearity in semiconductor laser amplifier,” Appl. Phys. Lett., vol.
72, no. 21, pp. 2657–2659, 1998.

[16] G. T. Kanellos, L. Stampoulidis, N. Pleros, T. Houbavlis, D. Tsiokos, E.
Kehayas, H. Avramopoulos, Member, IEEE, and G. Guekos, Member,
IEEE Clock and Data Recovery Circuit for 10-Gb/s Asynchronous
Optical Packets

[17] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the
Presence of Faults,” J. ACM, vol. 27, no. 2, pp. 228-234, Apr. 1980.

[18] D. Powell, P. Verissimo, G. Bonn, F. Waeselynck, and D. Seaton, “The
Delta-4 Approach to Dependability in Open Distributed Computing
Systems,” Digest of Papers, FTCS-18, Tokyo, pp. 246- 251, June 1988.

[19] F.B. Schneider, “Implementing Fault Tolerant Services Using the State
Machine Approach: A Tutorial,” ACM Computing Surveys, vol. 22,
no. 4, pp. 299-319, Dec. 1990.

[20] L. Lamport, “Using Time Instead of Timeout for Fault-Tolerant
Distributed Systems,” ACM Trans. Programming Languages and
Systems, vol. 6, no. 2, pp. 254-280, Apr. 1984.

[21] N. Vasanthavada and P.N. Marinos, “Synchronisation of Fault- Tolerant
Clocks in the Presence of Malicious Failures,” IEEE Trans. Computers,
vol. 37, no. 4, pp. 440-448, Apr. 1988.

[22] P. Verissimo, L. Rodrigues, and A. Casimoro, “Cesium Spray: A
Precise and Accurate Global Clock Service of Large Scale Systems,” J.
Real Time Systems, vol. 11, no. 3, 1997.

[23] D. Dolev, J. Halpern, and H.R. Strong, “On the Possibility and
Impossibility of Achieving Clock Synchronisation,” Proc. 16th Ann.
ACM STOC, pp. 504-511, Apr. 1984.

[24] F. Schmuck and F. Cristian, “Continuous Clock Amortization Need Not
Affect the Precision of a Clock Synchronisation Algorithm,” Proc.
Ninth ACM Symp. Principles of Distributed Computing, pp. 133-141,
Aug. 1990.

[25] K. Echtle, “Fault Masking and Sequence Agreement by a Voting
Protocol with Low Message Number,” Proc. Sixth Symp. Reliability in
Distributed Software and Database Systems, pp. 149-160, Mar. 1987.

[26] P. Verissimo, L. Rodrigues, and J. Rufino, “The Atomic Multicast
Protocol (AMp),” Delta-4: A Generic Architecture for Dependable
Distributed Computing, D. Powell, ed., pp. 267-294, ESPRIT Research
Papers, Springer-Verlag, 1991.

[27] P. Verissimo, “Causal Delivery Protocols in Real-Time Systems: A
Generic Model,” J. Real Time Systems, vol. 10, no. 1, pp. 45-73, 1996.

[28] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public Key Cryptosystems,” Comm. ACM, vol.
31, no. 2, pp. 120-126, Feb. 1978.

[29] P.D. Ezhilchelvan, “Early Stopping Algorithms for Distributed
Agreement under Fail-Stop, Omission, and Timing Fault Types,” Proc.
Sixth Symp. Reliability in Distributed Software and Database Systems,
pp. 201-212, Mar. 1987.

[30] D. Dolev, R. Reischuk, and H.R. Strong, “Early Stopping in Byzantine
Agreement,” J. ACM, vol. 37, no. 4, pp. 720-741, Oct. 1990.

[31]Paul D. Ezhilchelvan, Francisco V. Brasileiro, Member, IEEE Computer
Society, and Neil A. Speirs A Timeout-Based Message Ordering
Protocolfor a Lightweight Software Implementation of TMR Systems

[32]Paul Krzyzanowski- Lectures on distributed systems Clock
Synchronization

[33]Luca Schenato, Giovanni Gamba A distributed consensus protocol for
clock synchronization in wireless sensor network

[34]Bong Jun Choi, Student Member, IEEE, Hao Liang, Student Member,
IEEE, Xuemin (Sherman) Shen, Fellow, IEEE, and Weihua Zhuang,
Fellow, IEEE DCS: Distributed Asynchronous Clock Synchronization

in Delay Tolerant Networks.

Nikhil Khandare et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (3) , 2013, 457-460

www.ijcsit.com 460

